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Gamma-Ray Bursts are the most luminous and remote
phenomena in the Universe, with isotropic- egu:valent radiated
energies in X-gamma rays up to more than 10°* erg released in a
few tens of seconds and a redshift distribution extend/ng to at
least z = 9-10. Thus, they are in principle very powerful tools for
cosmology

 Part 1: status and perspectives of the research activities aimed
at using GRBs to investigate the expansion rate and geometry of
the Universe, thus getting clues to "dark energy" properties and
evolution

1 Part 2: GRBs as tools for exploring the early Universe at the
end of the "dark ages" (reionization, first stars, star formation rate

and metallicity evolution in the first billion of years)
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The accelerating and “dark™ Universe

[ the standard “hot big-bang” cosmological model as of middle '90s (general
relativity + Hubble law + cosmological principle + dark matter + CMB)
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The accelerating and “dark™ Universe

[ the standard “hot big-bang” cosmological model as of middle '90s (general
relativity + Hubble law + cosmological principle + dark matter + CMB)
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[ the standard “hot big-bang” cosmological model NOW: inflation + CMB ->
~ flat Universe (Qtot = 1), SN la (+ clusters, BAO) -> Qm ~0.3 -> accelerated
espansion + dark energy (cosmological constant, quintessence, ...)
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1 the Universe expansion is

Universe now expanding ~20% faster than 5 billion years ago

Models of the Expanding Universe

Decelerating, then
accelerating universe



[ the Universe is “dark”

All observational cosmology tests agree: ~96% of the Universe is dark
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A plethora of theoretical answers!
(A tale of unconstrained fantasy)
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Courtesy: Prof. Capozziello (Universita Federico Il Napoli)
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Measuring cosmological parameters

1 Standard candles (e.g., Cepheids, very low redshift) + “standardized”

sources (e.g., SN la) + large scale structure evolution (galaxies, clusters ->
BAO) + CMB (matter-energy and space-time fluctuations at z ~1100, inflation)

 e.g., standard candles: a population of unevolving sources, having a fixed

Intrinsic luminosity
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Measuring cosmological parameters

(] Standard candles (e.g., Cepheids, very low redshift) + “standardized”
sources (e.g., SN la) + large scale structure evolution (galaxies, clusters ->
BAO) + CMB (matter-energy and space-time fluctuations at z ~1100, inflation)




Accelerated Expansion
Afterglow Light \
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.
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Q e.g., EUCLID (> 2020) will investigate the distance-redshift relationship
and the evolution of cosmic structures by measuring shapes and redshifts
of galaxies and clusters of galaxies out to redshifts ~2, or equivalently to a
look-back time of 10 billion years




Why looking for more cosmological probes ?

1 different distribution in redshift -> different sensitivity to different
cosmological parameters

Supernova Cosmology Project
T

IIIIIIIIIIIIII
Knop et al. (2003)
Spergel et al. (2003)
Allen et al. (2002)
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Guy et al. 2010
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SNLS first year sample)



1 Each cosmological probe is
characterized by possible systematics

(1 e.g SN la:

»> different explosion mechanism and
progenitor systems ? May depend onz ?

» light curve shape correction for the
luminosity normalisation may depend on z

» signatures of evolution in the colours
» correction for dust extinction
» anomalous luminosity-color relation

» contaminations of the Hubble Diagram by
no-standard SNe-la and/or bright SNe-Ibc
(e.g. HNe)
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Supernova Cosmology Project

3 I|IIII|\III‘III\
Knop et al. (2003)
Spergel et al. (2003)
Allen et al. (2002) |
2 —
pernovae
1 —
e(pandS forevel
° ecoliapses eveituaty
73
-1 o,
Vo)
2
L 11 | L | | | | I I | L 11| |
0 1 2 3

Qyy

A(m-M)

-1

IR

1]
Y
1 L 11 Ill 1 |

Tul Lol

lllll llllllllll‘hll—'

01 A 1
redshift z

If the “offset from
the truth” is just
0.1 mag....

(slide by M. della
Valle)



Gamma-Ray Bursts as cosmological probes

> redshifts higher than 0.01 and up to > 8:

GRB are cosmological !

> their isotropic equivalent radiated energy

is huge (up to more than 10° erg in a few
tens of ¢ °
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Are Gamma-Ray Bursts standard candles ?

[ all GRBs with measured redshift (~320, including a few short GRBs) lie at
cosmological distances (z =0.033 — ~9.3) (except for the peculiar
GRB980425, z=0.0085)

1 isotropic luminosities and radiated energy are huge, can be detected up
to very high z

 no dust extinction problems; z distribution much beyond SN la but...
GRBs are not standard candles (unfortunately)
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1 jet angles, derived from break time of optical afterglow light curve by
assuming standard scenario, are of the order of few degrees

[ the collimation-corrected radiated energy spans the range ~5x10%° — 5x10%2
erg-> more clustered but still not standard
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O GRB have huge luminosity, a redshift
distribution extending far beyond SN Ia

1 high energy emission -> no extinction
problems
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O GRB have huge luminosity, a redshift
distribution extending far beyond SN Ia

1 high energy emission -> no extinction
problems

1 potentially powerful cosmological
sources hut need to investigate their
properties to find ways to standardize
them (if possible)
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The Ep,I - Eiso correlation

> GRB spectra typically NHE) = “( IEIIJIEI:E\'*) P (_ FE.,) *

described by the empirical Band (x—PE, = E
function with parameters o= low- [{a —ﬁ}E[.} exp (B — E )F
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> since 1997: measured spectrum + measured redshift -> intrinsic peak enery Ep,i
and radiated energy, average luminosity, peak luminosity

» lack of firm information on jet-opening angles -> use of isotropic-equivalent intensity
indicators (Eiso, Liso, Lp,iso)
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» Amati et al. (A&A 2002): significant correlation between Ep,i and Eiso
found based on a small sample of BeppoSAX GRBs with known redshift
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> Ep,i — Eiso correlation for GRBs with known redshift confirmed and
extended by measurements of ALL other GRB detectors with spectral
capabilities

130 long GRBs as of Sept. 2011

BeppoSAX GRBs

10000

1000

=1
S *]
T T TTT |

Jd
(keV)
100

10

_—
@




> Ep,i — Eiso correlation for GRBs with known redshift confirmed and
extended by measurements of ALL other GRB detectors with spectral
capabilities

162 long GRBs as of June 2013
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» strong correlation but significant dispersion of the data around the best-fit
power-law; distribution of residuals can be fit with a Gaussian with o(logEp,i) ~ 0.2

» the “extra-statistical scatter” of the data can be quantified by performing a fit whith
a max likelihood method (D’Agostini 2005) which accounts for sample variance and
the uncertainties on both X and Y auantities
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é 2
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» with this method Amati et al. (2008, 2009) found an extrinsic scatter
o;(logEp,i) ~ 0.18 and index and normalization t ~0.5 and ~100, respectively
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Correlation of Ep,i with other “intensity” indicators

» the correlation holds also when substituting Eiso with Liso (e.g., Lamb et al. 2004) or
Lpeak,iso (Yonetoku et al. 2004, Ghirlanda et al., 2005)

> this is expected because Liso and Lpeak,iso are strongly correlated with Eiso

» wir to Eiso, Lp,iso is subject to more uncertainties (e.g., light curves peak at
different times in different energy bands; spectral parameters at peak difficult to
estimate; which peak time scale ?)

1048 1050 1052 1054 1048 1050 1052 1054
Eizo [erq] Liso [erg/s]

Nava et al. 2009



Correlation of Ep,i with other “intensity” indicators
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Correlation of Ep,i with other “intensity” indicators

» the correlation holds also when substituting Eiso with Liso (e.g., Lamb et al. 2004) or
Lpeak,iso (Yonetoku et al. 2004, Ghirlanda et al., 2005)

> this is expected because Liso and Lpeak,iso are strongly correlated with Eiso

» wir to Eiso, Lp,iso is subject to more uncertainties (e.g., light curves peak at
different times in different energy bands; spectral parameters at peak difficult to
estimate; which peak time scale ?)
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J Amati, Frontera & Guidorzi (2009): the normalization of the correlation
varies only marginally using measures by individual instruments with
different sensitivities and energy bands: -> no relevant selection effects
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J Amati, Frontera & Guidorzi (2009): the normalization of the correlation
varies only marginally using measures by individual instruments with
different sensitivities and energy bands: -> no relevant selection effects
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» the Ep,i- Liso and Ep,| - Eiso correlation holds also within a good fraction of GRBs
(Liang et al.2004, Firmani et al. 2008, Ghirlanda et al. 2009, Li et al. 2012, Frontera et
al. 2012, Basak et al. 2013): robust evidence for a physical origin and clues to

explanation
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» the Ep,i- Liso and Ep,| - Eiso correlation holds also within a good fraction of GRBs
(Liang et al.2004, Firmani et al. 2008, Ghirlanda et al. 2009, Li et al. 2012, Frontera et
al. 2012, Basak et al. 2013): robust evidence for a physical origin and clues to

explanation
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Implications: emission physics and geometry

 physics of prompt emission still not settled, various scenarios: SSM internal
shocks, IC-dominated internal shocks, external shocks, photospheric emission
dominated models, kinetic energy / Poynting flux dominated fireballs, ...

de.g.Epk l"_zt‘;i.L” *for syncrotron emission from a power-law distribution of
electrons generated in an internal shock (Zhang & Meszaros 2002, Ryde 2005)

Qeg., B x By B2 in scenarios in wheh for comptonized thermal
emission from the photosphere dominates (e.g. Rees & Meszaros 2005, Thomson et

al. 20006) F,
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1 jet geometry and structure and XRF-GRB
unification models (e.g., Lamb et al. 2004)

3 viewing angle effects: =[y(1 - Bcos(Ov - AO))]",
AEp oc & , AEiso oc 8(1+% (e.g, Yamazaki et al.)
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» Implications: sub-classes of GRBS
» Sept. 2012 Ep,i — Eiso plane: 148 long GRBs, 4 XRFs, 13 short GRBs
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estimates and limits on Ep,i and Eiso are
Inconsistent with Ep,i-Eiso correlation holding
for long GRBs

1 low Eiso values and high lower limits to
Ep,i indicate inconsistency also for the other
short GRBs

[ long weak soft emission in some cases,
consistent with the Ep,i — Eiso correlations
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“‘Standardizing” GRB with the Ep,i - Intensity correlation

E,-=Epobsx(1+z)

/ ENEVdE cre
1

-D,=D,(z,H,, Q,, 2,...)

"‘-"ESG

 not enough low-z GRBs for cosmology-independent calibration -> circularity
is avoided by fitting simultaneously the parameters of the correlation and

cosmological parameters

d does the extrinsic scatter and goodness of fit of the Ep,i-Eiso correlation vary
W|th the cosmologlcal parameters used to compute Eiso ?
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L afraction of the extrinsic scatter of the E ;-E,;, correlation is indeed

due to the cosmological parameters used to compute E;_,

O Evidence, independent on SN la or other cosmological probes, that, if
we are in a flat ACDM universe , Q,, is lower than 1 and around 0.3

0.915F -

0.910 F .

X°/ X’ max

0.905 |- .

0.900 |- -

0895 S

0.0 0.2 0.4 0.6 0.8 1.0
()

Amati et al. 2008, 2013




» By using a maximum likelihood method the extrinsic scatter can be
parametrized and quantified (e.g., Reichart 2001)

1 . o 1 (4, —mr; — )

i " . P I — . 2 2 .2 k _ ol B 7 ’
Lim,c.o,:x.y) = 5 5 log —|— o, m f:rlr,i}—|—q E VI
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» ,, could be constrained (Amati+08, 70 GRBs) to 0.04-0.43 (68%) and 0.02-
0.71 (90%) for a flat ACDM universe (€2, = 1 excluded at 99.9% c.|.)

58 .
__ —B.0OF .
—B2F s

likelihood

6.4 .
6.6 .

og(
|

—1

—6.8F .
—70F .

)

0.0 0.2 0.4 0.6 0.8 1.0
QM

Amati et al. 2008, 2013




» analysis of updated sample of 137 GRBs (Amati+12) shows significant

improvements w/r to the sample of 70 GRBs of Amati et al. (2008)

» this evidence supports the reliability and perspectives of the use of the
Ep,i — Eiso correlation for the estimate of cosmological parameters

Qm (flat universe) best 68% 90%
70 GRBs (Amati+ 08) 0.27 0.09 - 0.65 0.05-0.89
137 GRBs (Amati+ 12) 0.29 0.12 - 0.54 0.08-0.79




Supernova Cosmology Project
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Perspectives

1 present and near future: main contribution
expected from joint Fermi + Swift measurements

> Up to 2009: ~290 Fermi/GBM GRBs, Ep estimates for
~90%, ~35 simultaneously detected by Swift (~13%), 13 with
Ep and z estimates (~10% of Swift sample)

» 2008 pre-Fermi : 61 Swift detections, 5 BAT Ep (8%), 15
BAT + KONUS + SUZAKU Ep estimates (25%), 20 redshift
(33%), 11 with Ep and z estimates (~15% of Swift sample)

» Fermi provides a dramatic increase in Ep estimates (as
expected), but a only small fraction of Fermi GRBs is detected
[ localized by Swift (~15%) -> low number of Fermi GRBs
with Ep and z (~5%).

» Summary: 15-20 GRB/year in the Ep,i - Eiso plane




1 In the > 2020 time frame a significant step forward expected from
SVOM (+ UFFO, CALET/GBM ?)

» spectral study of prompt emission in 5-5000 keV -> accurate estimates of Ep and
reduction of systematics (through optimal continuum shape determination and
measurement of the spectral evolution down to X-rays)

» fast and accurate localization of optical counterpart and prompt dissemination to
optical telescopes -> increase in number of z estimates and reduction of selection
effects -

GRM
Gamma Ray burst Monitor VT
50 keV-5 MeV : Visual Telescope

> Optlmlzed fOI’ deteCtIOH Of grrpﬁr Fo_Vhd 45 cm aperture
XRFs, short GRB, sub- B —
energetic GRB, high-z GRB

> substantial increase of the 4-300 keV

2srFoV
Coded mask +

number of GRB with known z CaTe array
and Ep -> test of correlations

and calibration for their

cosmological use

XIAQ
X-ray Imager
for Afterglows
Observations
032 keV
FoV 23'%23




1 Enlargement of the sample (+ self-calibration)

» the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an
increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an
increasing accuracy in the estimate of cosmological parameters

» future GRB experiments (e.g., SVOM) and more investigations (in particular:
reliable estimates of jet angles and self-calibration) will improve the significance
and reliability of the results and allow to go beyond SN la cosmology (e.g.
investigation of dark energy)

GRB # o o
(flat) (flat,Qn;=0.3,w,=0.5)
70 (real) GRBs (Amati+ 08) 0.277 5 s <—0.3 (90%)
156 (real) GRBs (Amati+ 13) [}_ngg-gg —U-Qf'i'jé
250 (156 real + 94 simulated) GRBs 0.207015 —0.91+9-3
500 (156 real + 344 simulated) GRBs 0.2975 5o —0.970-2
156 (real) GRBs, calibration 0.307 5 oa —1.1753,
250 (156 real + 94 simulated) GRBs, calibration ~ 0.307) 02 ~1.17530
500 (156 real + 344 simulated) GRBs, calibration  0.307(03 —1.17512
Wy z

w(z) = wp +

Amati & Della Valle 2013 142




1 Enlargement of the sample (+ self-calibration + reliable jet angles)

» the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an
increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an
increasing accuracy in the estimate of cosmological parameters

> future GRB e
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 Accounting for collimation

» 2004: evidence that by substituting
Eiso with the collimation corrected
energy Ey the logarithmic dispersion of
the correlation decreases significantly
and is low enough to allow its use to

standardize GRB (Ghirlanda et al., Dai
et al, and many)
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1 Accounting for collimation: perspectives

» the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an
increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an
increasing accuracy in the estimate of cosmological parameters

» future GRB experiments (e.g., SVOM) and more investigations (physics, methods,
calibration) will improve the significance and reliability of the results and allow to go
beyond SN la cosmology (e.g. investigation of dark energy)
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1 Accounting for collimation: drawbacks

» the Ep-Ey correlation is model dependent: slope depends on the assumptions on
the circum-burst environment density profile (ISM or wind)

» addition of a third observable introduces further uncertainties (difficulties in
measuring t_break, chromatic breaks, model assumptions) and substantially reduces
the number of GRB that can be used (e.g., #Ep,i — Ey ~ 74 #Ep,i — Eiso )
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Nava et al.. , A&A, 2005: ISM (left) and WIND (right)




> lack of jet breaks in several Swift X-ray afterglow light curves, in some cases,

» challenging evidences for Jet interpretation of break in afterglow light curves or

evidence of achromatic break

due to present inadequate sampling of optical light curves w/r to X-ray ones and
to lack of satisfactory modeling of jets ?
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1 Calibrating the Ep,i — Eiso correlation with SN la

» Several authors (e.g., Kodama et al., 2008; Liang et al., 2008, Li et al. 2008,
Demianski et al. 2010-2011, Capozziello et al. 2010, Wang et al. 2012) are
investigating the calibration of the Ep,i - Eiso correlation at z < 1.7 by using the
luminosity distance — redshift relation derived for SN la

» The aim is to extend the SN la Hubble diagram up to redshifts at which the
luminosity distance is more sensitive to dark energy properties and evolution

» Drawback: with this method GRB are no more an indipendent cosmological probe
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1 Calibrating the Ep,i — Eiso correlation with SN la

» Several authors (e.g., Kodama et al., 2008; Liang et al., 2008, Li et al. 2008,
Demianski et al. 2010-2011, Capozziello et al. 2010, Wang et al. 2012) are
investigating the calibration of the Ep,i - Eiso correlation at z < 1.7 by using the
luminosity distance — redshift relation derived for SN la

» The aim is to extend the SN la Hubble diagram up to redshifts at which the
luminosity distance is more sensitive to dark energy properties and evolution

» Drawback: with this method GRB are no more an indipendent cosmological probe
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» The GRB Hubble diagram
extends to much higher z w/r to
SNe la

» The GRB Hubble diagram is z
consistent with SNe la Hubble 3 .
diagram at low redshifts: T
reliability _
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Gamma-Ray Bursts are the most luminous and remote
phenomena in the Universe, with isotropic- egu:valent radiated
energies in X-gamma rays up to more than 10°* erg released in a
few tens of seconds and a redshift distribution extend/ng to at
least z = 9-10. Thus, they are in principle very powerful tools for
cosmology

 Part 1: status and perspectives of the research activities aimed
at using GRBs to investigate the expansion rate and geometry of
the Universe, thus getting clues to "dark energy" properties and
evolution

1 Part 2: GRBs as tools for exploring the early Universe at the
end of the "dark ages" (reionization, first stars, star formation rate

and metallicity evolution in the first billion of years)
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Gamma-Ray Burst as powerful
probes of the early Universe

Because of their huge luminosities, mostly emitted in the X and gamma-
rays, their redshift distribution extending at least to z ~10 and their
association with explosive death of massive stars and star forming regions,
GRBs are unique and powerful tools for investigating the early Universe:
SFR evolution, physics of re-ionization, galaxies metallicity evolution
and luminosity function, first generation (pop lll) stars
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A statistical sample of high—-z GRBs can provide fundamental information

about:

e measure independently the cosmic star-formation rate, even
beyond the limits of current and future galaxy surveys

GRB 090429B 3 o]
I Robertson&Ellis12 i
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« the number density and properties of low-mass galaxies

050904 F850LP |060522 F110W| 060927 F110W
2=6.20; Mpg> 28.86 | Z=5.11; Mpg>28.13. | Z=5.47;M,,> 28,57

080913 F160W | 090423 F125W+F160W| 0904298 F160
7=6.73; Mpg>27.92 | Z28:23:M,;>3029 | Z=9.4;M,5> 28.49

:[
Tanvir+12 ——"— 2

Robertson&Ellis12

Even JWST and ELTs surveys will be not able to probe the faint end of the galaxy
Luminosity Function at high redshifts (z>6-8)



Atterglow spectra contain much information

Abundances, HI, dust, dynamics etc. even for very faint hosts. E.g. GRB
050730: faint host (R>28.5), but z=3.97, [Fe/H]=-2 and low dust, from
afterglow spectrum (Chen et al. 2005; Starling et al. 2005).
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The first, metal-free stars (the so-called Poplll stars) can result in powerful GRBs (e.g.
Meszaros+10). GRBs offer a powerful route to directly identify such elusive objects (even
JWST will not be able to detect them directly) and study the galaxies in which they are
hosted.

Even indirectly, the role of Poplll stars in enriching the first galaxies with metals can be studied by looking
to the absorption features of Popll GRBs blowing out in a medium enriched by the first Poplll supernovae

(Wang+12).
More generally, what is the cosmic chemical evolution at early times?

Age of the Universe (Gyrs)
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J GRB White paper for
ESA/L2-L3

> Time frame: next decade
» Collaboration: D, UK, Fr, It, Ir, Dm, ..
> Status: theme for ESA/L2-3

Age of the Universe (Gyr)

—
=

Number

296 GRBs

M E

1 2 3 4 5 6 7 B 910
1+z

» Goals: detect 1000 GRB/year for substantial increase of high-z GRBs (30 at z >9)
-> GRBs as probes of Pop Ill stars, metal enrichment and reionization of the
Universe, IGM,SFR evolution up to early Universe ; provide trigger and e.m.
counterpart for next generation grav. wave and neutrino detectors; GRB polarisation

» Payload.: different solutions proposed, e.g., multi-BAT or Compton Telescope or
Lobster-eye telescope + X-ray telescope +NIR telescope; L2 orbit prefarable

Table 1: Scientific requirements for a future GRB mission with assumed 5 yr lifetime.

Requirement Goal

Detector ability

1. Detect 1000 GRBs/yr

3. Rapid localization to few ”
4. Provide z-indication

obtain 50 (5) GRBs at z = 10(20)

2. Rapid transmission to ground  allow timely follow-up observations
opt/NIR identification of 1000 GRBs/yr slewing X-ray or opt/NIR telescope
allow selection of high-z objects

large FOV, soft response
communication network

multi-filter or spectroscopic capability



Lead Proposer: Lorenzo Amati (INAF — IASF Bologna, Italy)

M4 proposal coordinators: Lorenzo Amati, Paul O’Brien (Univ. Leicester,
UK), Diego Gotz (CEA-Paris, France), Alberto
Castro-Tirado (IAA, Spain)

Payload consortium: Italy, UK, Spain, Denmark, Poland, Czech Republic,
ESA (+ France, Hungary, Slovenia, Ireland)

International partners: USA (+ interest from Brasil, Japan, Israel, Turkey)




THESEUS: Main scientific goal

Exploring the Early Universe (cosmic

dawn and reionization era) by First Stars and Reionization Era
unveiling the Gamma-Ray Burst ek v P ——
(GRBs) population in the first billion N s

years oot/ Planck N unwess b

neutral and fransparent

The study of the Universe before and
during the epoch of reionization represents
one of the major themes for the next [
generation of space and ground-based
observational facilities. Many questions
about the first phases of structure
formation in the early Universe will still be

Epoch of Reionization Galaxies and Quasers

- ~THESEUS: =~ | comson

open in the late 2020s: TR ERETE R T Lo
*  When and how did first stars/galaxies “EUCHD i e
form? st
+  What are their properties? When and i _ | sy
how fast was the Universe enriched
with metals? S /

Today: Astronomers look back and understand

« How did reionization proceed?



THESEUS payload

Soft X-ray Imager (SXI): a set of « Lobster-Eye » X-ray (0.3 - 6
keV) telescopes covering a total FOV of 1 sr field with 0.5 — 1
arcmin source location accuracy, provided by a UK led
consortium (+ Czech Repubblic)

InfraRed Telescope (IRT): a 70 cm class near-infrared (up to 2
microns) telescope (IRT) with imaging and moderate spectral
capabilities provided by a Spanish led consortium (+ ESA, +
Ireland ?)

X-Gamma-rays  Spectrometer  (XGS):  non-imaging
spectrometer (XGS) based on SDD+Csl, covering the same
FOV than the Lobster telescope extending its energy band up to
20 MeV. This instrument will be provided by an Italian led
consortium (+USA ?)

Payload Data Handling System (PDHS): Poland led
consortium (+ Denmark, Finland)
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