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๏ Basics of structure formation
• Deviations from homogeneity
• Perturbed cosmological equations in the Newtonian gauge
• Linear growth of density perturbations
• The matter power spectrum

๏ Observational evidence of Dark Energy from perturbations
• Cosmic Microwave Background: the ISW effect
• Angular correlation function of galaxies

๏ Homogeneous DE models beyond the cosmological constant
• Dark Energy parameterisations
• Early Dark Energy
• Scalar field models: Quintessence and k-essence

๏ Interacting Dark Energy and Modified Gravity theories
• Coupled Quintessence
• f(R) gravity
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Deviations from homogeneity (I)
Our local perception of the Universe is far from a homogeneous 
space: the Cosmological Principle is not perfectly realised and 
holds only at very large scales.
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Deviations from homogeneity (I)
Our local perception of the Universe is far from a homogeneous 
space: the Cosmological Principle is not perfectly realised and 
holds only at very large scales.

We observe particles (like stars, 
galaxies, and galaxy clusters) 
inhomogeneously distributed in 
space to form a large-scale 
structure called the cosmic web

Millennium XXL, Angulo et al. 2009



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

Deviations from homogeneity (I)
Our local perception of the Universe is far from a homogeneous 
space: the Cosmological Principle is not perfectly realised and 
holds only at very large scales.

To quantify the inhomogeneity 
of a distribution we use the 2-
point correlation function ξ:

⇠(r) =
h⇢(r)i
⇢0

� 1

so that Z
⇠(r)dV = 0

(45)

(46)

We observe particles (like stars, 
galaxies, and galaxy clusters) 
inhomogeneously distributed in 
space to form a large-scale 
structure called the cosmic web

Millennium XXL, Angulo et al. 2009
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Deviations from homogeneity (II)
To describe an inhomogeneous Universe that recovers 
homogeneity at large scales we need to derive again GR equations 
using a “perturbed” FLRW metric (in conformal time                   ):d⌘ ⌘ dt/a

gµ⌫ = g(0)µ⌫ + �gµ⌫ (47)
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Deviations from homogeneity (II)
To describe an inhomogeneous Universe that recovers 
homogeneity at large scales we need to derive again GR equations 
using a “perturbed” FLRW metric (in conformal time                   ):d⌘ ⌘ dt/a

gµ⌫ = g(0)µ⌫ + �gµ⌫ (47)

where (by choosing the Newtonian gauge):

g(0)µ⌫ = a2
✓

�1 0
0 �ij

◆
�gµ⌫ = a2

✓
�2 0
0 2��ij

◆

so that the perturbed line element in conformal time is:

ds

2 = a

2(⌘)
⇥
�(1 + 2 )d⌘2 + (1 + 2�)�ijdx

i
dx

j
⇤

(48)

(49)
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homogeneity at large scales we need to derive again GR equations 
using a “perturbed” FLRW metric (in conformal time                   ):d⌘ ⌘ dt/a
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so that the perturbed line element in conformal time is:

ds

2 = a

2(⌘)
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j
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(49)

where     and     are perturbation functions and are assumed to be 
small:

 �

 , �⌧ 1 (50)
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Deviations from homogeneity (III)

(52)

With the perturbed FLRW metric in the Newtonian gauge one can 
derive the perturbed version of the Einstein equations:

Gµ(0)
⌫ + �Gµ

⌫ = 8⇡G(Tµ(0)
⌫ + �Tµ

⌫ ) ) �Gµ
⌫ = 8⇡G�Tµ

⌫ (51)
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Deviations from homogeneity (III)

By following an analogous procedure as for the homogeneous 
metric (compute                                                  ) one obtains the 
components of the perturbed Einstein Tensor 

��µ
⌫� ! �Rµ⌫ ! �R ! �Gµ
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Deviations from homogeneity (III)

By following an analogous procedure as for the homogeneous 
metric (compute                                                  ) one obtains the 
components of the perturbed Einstein Tensor 

��µ
⌫� ! �Rµ⌫ ! �R ! �Gµ

⌫

(52)

With the perturbed FLRW metric in the Newtonian gauge one can 
derive the perturbed version of the Einstein equations:

Gµ(0)
⌫ + �Gµ

⌫ = 8⇡G(Tµ(0)
⌫ + �Tµ

⌫ ) ) �Gµ
⌫ = 8⇡G�Tµ

⌫ (51)

For the perturbed energy-momentum tensor          of a single fluid 
with equation of state    , by assuming it remains a perfect fluid 
(               for i ≠ j) one has:

�Tµ
⌫

�T i
j = 0

w

�Tµ
⌫ = ⇢

⇥
�(1 + c2s)u⌫u

µ + (1 + w)(�u⌫u
µ + u⌫�u

µ) + c2s��
µ
⌫

⇤
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Deviations from homogeneity (III)

By following an analogous procedure as for the homogeneous 
metric (compute                                                  ) one obtains the 
components of the perturbed Einstein Tensor 

��µ
⌫� ! �Rµ⌫ ! �R ! �Gµ

⌫

(52)where we have introduced the density contrast    and the sound 
speed     :

�
c2s c2s ⌘ �p/�⇢ � ⌘ �⇢/⇢ (53)

With the perturbed FLRW metric in the Newtonian gauge one can 
derive the perturbed version of the Einstein equations:

Gµ(0)
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Perturbed cosmological equations (I)
With some (tedious) algebra, by equating the different components 
of the perturbed tensors, one gets the perturbed Einstein eqs:

(0, 0) : 3H(H � �0) +r2� = �4⇡Ga2�⇢

(0, i) : r2(�0 �H ) = 4⇡Ga2(1 + w)⇢✓

(i, j) :  = ��

(i, i) : �00 + 2H�0 �H 0 � (H2 + 2H0) = �4⇡Ga2c2s�⇢

where we have introduced the velocity divergence variable ✓ ⌘ riv
i

with vi ⌘ dx

i
/d⌘ = adx

i
/dt

(54)
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Perturbed cosmological equations (I)

The (i,j) component comes from the assumption of a perturbed 
perfect fluid               , and the (i,i) component becomes a dynamic 
equation for the (only) gravitational potential

�T i
j = 0

�

With some (tedious) algebra, by equating the different components 
of the perturbed tensors, one gets the perturbed Einstein eqs:

(0, 0) : 3H(H � �0) +r2� = �4⇡Ga2�⇢

(0, i) : r2(�0 �H ) = 4⇡Ga2(1 + w)⇢✓

(i, j) :  = ��

(i, i) : �00 + 2H�0 �H 0 � (H2 + 2H0) = �4⇡Ga2c2s�⇢

where we have introduced the velocity divergence variable ✓ ⌘ riv
i

with vi ⌘ dx

i
/d⌘ = adx

i
/dt

(54)
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Perturbed cosmological equations (II)

(56)

The last piece of information comes from the perturbed version of 
the continuity equation:              . Using the perturbed Christoffel:rµ�T

µ
⌫

⌫ = 0 : �0 + 3H(c2s � w)� = �(1 + w)(✓ + 3�0)

⌫ = i : ✓0 +


H(1� 3w) +

w0

1 + w

�
✓ = �r2

✓
c2s

1 + w
� + 

◆
(55)
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Perturbed cosmological equations (II)

(56)

The last piece of information comes from the perturbed version of 
the continuity equation:              . Using the perturbed Christoffel:rµ�T

µ
⌫

⌫ = 0 : �0 + 3H(c2s � w)� = �(1 + w)(✓ + 3�0)

⌫ = i : ✓0 +


H(1� 3w) +

w0

1 + w

�
✓ = �r2

✓
c2s

1 + w
� + 

◆
(55)

cs ' 0

✓0 +H✓ = �r2 

These equations strongly simplify for the case of non-relativistic 
matter (           ,            ) at small scales (           ):w ' 0 �0 ' 0

�0 = �✓ (57)
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Perturbed cosmological equations (II)

(56)

The last piece of information comes from the perturbed version of 
the continuity equation:              . Using the perturbed Christoffel:rµ�T

µ
⌫

⌫ = 0 : �0 + 3H(c2s � w)� = �(1 + w)(✓ + 3�0)

⌫ = i : ✓0 +


H(1� 3w) +

w0

1 + w

�
✓ = �r2

✓
c2s

1 + w
� + 

◆
(55)

cs ' 0

✓0 +H✓ = �r2 

These equations strongly simplify for the case of non-relativistic 
matter (           ,            ) at small scales (           ):w ' 0 �0 ' 0

�0 = �✓ (57)

Finally, from Einstein (0,0) at small scales (                       ) one 
gets the sub-horizon Poisson equation:

H2� ⌧ r2�

r2� = 4⇡Ga2⇢� =
3

2

8⇡G⇢

3H2
a2H2� =

3

2
⌦H2� (58)
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Perturbed cosmological equations (III)
Combining the derivative of the continuity with the Euler equation 
one gets a 2nd order differential equation for the density contrast, 
describing the process of gravitational instability:

�00 +H�0 � 3

2
⌦H2� = 0 (59)
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Perturbed cosmological equations (III)
Combining the derivative of the continuity with the Euler equation 
one gets a 2nd order differential equation for the density contrast, 
describing the process of gravitational instability:

�00 +H�0 � 3

2
⌦H2� = 0 (59)

which (for an Einstein-deSitter Universe,           )has solutions:
�+ = Aa (growing) �� = Ba�3/2 (decaying)

which implies a constant gravitational potential 
� / const.

⌦ ⇡ 1

(60)
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Perturbed cosmological equations (III)
Combining the derivative of the continuity with the Euler equation 
one gets a 2nd order differential equation for the density contrast, 
describing the process of gravitational instability:

�00 +H�0 � 3

2
⌦H2� = 0 (59)

which (for an Einstein-deSitter Universe,           )has solutions:
�+ = Aa (growing) �� = Ba�3/2 (decaying)

which implies a constant gravitational potential 
� / const.

⌦ ⇡ 1

(60)

For the case of two pressureless fluids (as e.g. baryons and dark 
matter), the gravitational instability equation is easily generalised:

�00c +H�0c �
3

2
H2(⌦c�c + ⌦b�b) = 0

�00b +H�0b �
3

2
H2(⌦c�c + ⌦b�b) = 0

(61)

(62)
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formation of cosmic structures, starting from the primordial density 
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Linear growth of density perturbations
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formation of cosmic structures, starting from the primordial density 
fluctuations. This process can be altered by Dark Energy.

Primordial density field
zCMB ⇡ 103, aCMB ⇡ 10�3

�T/T ⇡ �⇢b/⇢b ⇡ 10�5
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Linear growth of density perturbations
The process of gravitational instability is responsible for the 
formation of cosmic structures, starting from the primordial density 
fluctuations. This process can be altered by Dark Energy.
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Linear growth of density perturbations
The process of gravitational instability is responsible for the 
formation of cosmic structures, starting from the primordial density 
fluctuations. This process can be altered by Dark Energy.

Primordial density field
zCMB ⇡ 103, aCMB ⇡ 10�3

�T/T ⇡ �⇢b/⇢b ⇡ 10�5

gravitational
instability

Structures in the present-day Universe

D+ ⇡ 103

z0 = 0, a0 = 1

�00 +H�0 � 3

2
H2� = 0

(�⇢/⇢)th ⇡ 10�2 (�⇢/⇢)
obs

⇡ 1

With a cosmological constant                         :⌦M + ⌦⇤ = 1 �+ / am, m < 1

HWith more complicated Dark Energy models also      changes non-
trivially, and additional forces might come to play, so that m 7 1

Evidence for the existence of non-baryonic dark matter
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The matter power spectrum
How to measure the level of inhomogeneity of a perturbation field?
A convenient approach is to decompose the field in Fourier modes:

�
k

=
1

V

Z
�(x)e�ik·xdV h�kiV = h�(x)iV = 0 (63)
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The matter power spectrum
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P (k) = V �k�
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The simplest non-trivial statistics is the power spectrum:

) P (k) =

Z
⇠(r)e�ik·rdV (64)
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The matter power spectrum
How to measure the level of inhomogeneity of a perturbation field?
A convenient approach is to decompose the field in Fourier modes:

�
k

=
1

V

Z
�(x)e�ik·xdV h�kiV = h�(x)iV = 0 (63)

P (k) = V �k�
⇤
k

The simplest non-trivial statistics is the power spectrum:

) P (k) =

Z
⇠(r)e�ik·rdV (64)

R
One can then compute the variance of the field in spheres of radius         
     using a spherical top-hat window function                               for                        
                      and                    otherwise:             

W (x) = 3/4⇡R3

x� x0 < R W (x) = 0

�2
R =

1

2⇡

Z
P (k)W 2(k)k2dk (65)
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The matter power spectrum
How to measure the level of inhomogeneity of a perturbation field?
A convenient approach is to decompose the field in Fourier modes:

�
k

=
1

V

Z
�(x)e�ik·xdV h�kiV = h�(x)iV = 0 (63)

P (k) = V �k�
⇤
k

The simplest non-trivial statistics is the power spectrum:

) P (k) =

Z
⇠(r)e�ik·rdV (64)

R
One can then compute the variance of the field in spheres of radius         
     using a spherical top-hat window function                               for                        
                      and                    otherwise:             

W (x) = 3/4⇡R3

x� x0 < R W (x) = 0

�2
R =

1

2⇡

Z
P (k)W 2(k)k2dk (65)

When we say that                      what we actually mean is that:(�⇢/⇢)0 ⇡ 1

�8 ⌘ �8h�1Mpc ⇡ 1 (66)



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

observational
evidence of cosmic 
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Cosmic Microwave Background
Dark Energy is a low-redshift phenomenon, so it should not affect 
the properties of the CMB at the last scattering surface. However, 
CMB photons travel through a Dark Energy dominated Universe 
before reaching us, and their properties can be modified by DE.
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Dark Energy is a low-redshift phenomenon, so it should not affect 
the properties of the CMB at the last scattering surface. However, 
CMB photons travel through a Dark Energy dominated Universe 
before reaching us, and their properties can be modified by DE.

CMB temperature anisotropies (Planck 2015)
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Cosmic Microwave Background
Dark Energy is a low-redshift phenomenon, so it should not affect 
the properties of the CMB at the last scattering surface. However, 
CMB photons travel through a Dark Energy dominated Universe 
before reaching us, and their properties can be modified by DE.

CMB temperature anisotropies (Planck 2015) Angular power spectrum (Planck 2015)

In particular, the power at large angles (           ) is dominated by 
the ISW contribution:

` . 30

(�T/T )ISW /
Z O

E

2(@�/@⌘)d⌘

More on this in the CMB lectures (Burigana, Mandolesi, Natoli)

= 0

6= 0

for matter domination

in the presence of DE

(67)
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Large Scale Structures
The first observational hint of a DE-dominated Universe came from 
the comparison of the APM galaxy survey with N-body simulations 
~ 10 years before the detection of acceleration 
(Maddox et al. 1990, Efstathiou, Sutherland, Maddox 1990)
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Large Scale Structures
The first observational hint of a DE-dominated Universe came from 
the comparison of the APM galaxy survey with N-body simulations 
~ 10 years before the detection of acceleration 
(Maddox et al. 1990, Efstathiou, Sutherland, Maddox 1990)

EdS, ΩM=1

simulation of 
ΩM=0.2, ΩΛ=0.8

ΩM=0.2, ΩΛ=0

DATA
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dark energy 
models beyond 

the cosmological 
constant
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Classification of Dark Energy models
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time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘
Dynamical DE 

(DE parameterisations, 
Quintessence, 

k-essence)

✔
a dynamical (scalar) 
degree of freedom

✘ 

no clustering at 
sub-horizon scales

✘
minimally-coupled to 

matter fields

Classification of Dark Energy models
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Dark Energy parameterisations (I)
A first step to generalise Dark Energy beyond the cosmological 
constant is to release the property
that characterises Λ, for instance by considering phenomenological 
cases like                                         or even 

wDE = �1 ) ⇢DE = const.

wDE = const. < �1/3 wDE(z)
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Dark Energy parameterisations (I)
A first step to generalise Dark Energy beyond the cosmological 
constant is to release the property
that characterises Λ, for instance by considering phenomenological 
cases like                                         or even 

wDE = �1 ) ⇢DE = const.

wDE = const. < �1/3 wDE(z)

Some popular parameterisations are:

Chevalier-Polarski-Linder (CPL):

Early Dark Energy (EDE, Doran & Robbers 2006): 

w(a) = w0 + wa(1� a)

b = � 3w0

ln 1�⌦EDE
⌦EDE

+ ln 1�⌦M
⌦M

wDE(a) =
w0

1 + b ln(1/a)

(68)

(69)
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Dark Energy parameterisations (II)

1 10 100 1000
1+z

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5
w

CPL, w0 = -1.1, wa = +0.3

CPL, w0 = -1, wa = +0.2

HYP, w0 = -1.1, wa = +0.3, zt = 2.5

HYP, w0 = -1, wa = +0.2, zt = 2.5
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Quintessence models (I)
A more physically motivated class of dynamical Dark Energy 
scenarios is given by scalar field models based on a scalar degree 
of freedom         evolving in a self-interaction potential          :�(t) V (�)

L� = �1

2
gµ⌫@µ�@⌫�� V (�) (70)
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Quintessence models (I)
A more physically motivated class of dynamical Dark Energy 
scenarios is given by scalar field models based on a scalar degree 
of freedom         evolving in a self-interaction potential          :�(t) V (�)

L� = �1

2
gµ⌫@µ�@⌫�� V (�) (70)

In a FLRW metric this gives a diagonal energy momentum tensor:

⇢� = �T 0(�)
0 =

1

2
�̇2 + V (�) p� =

1

3
T i(�)
i =

1

2
�̇2 � V (�)

(71)with an equation of state:

w�(t) =
�̇2 � 2V (�)

�̇2 + 2V (�)
(72)

and a dynamical equation for the field (Klein-Gordon equation):

⇢̇� + 3H(⇢� + p�) = 0 ) �̈+ 3H�̇+
dV

d�
= 0 (73)
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V (�) = V0 exp[�↵�]
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Quintessence models (II)

�̈ + 3H�̇ +
dV

d�
= 0

V (�) = V0 exp[�↵�]



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

Quintessence models (III)



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

Quintessence models (III)
The interesting feature of scalar field Quintessence models is that 
for some particular potentials they provide scaling solutions:

⇢�
⇢
background

⇡ const. (74)
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Quintessence models (III)

In particular, for an exponential potential
one solution is given by: 

V (�) = V0 exp[�↵�]
⌦� = 24⇡G(1 + w

background
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The interesting feature of scalar field Quintessence models is that 
for some particular potentials they provide scaling solutions:

⇢�
⇢
background

⇡ const. (74)



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

Quintessence models (III)

In particular, for an exponential potential
one solution is given by: 

V (�) = V0 exp[�↵�]
⌦� = 24⇡G(1 + w

background

)/↵2

However, on the scaling solution
w� = w

background
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Quintessence models (III)

In particular, for an exponential potential
one solution is given by: 

V (�) = V0 exp[�↵�]
⌦� = 24⇡G(1 + w

background

)/↵2

However, on the scaling solution
w� = w

background

so that the field cannot drive 
acceleration.
Possible solutions to this issue 
amount to perturbing the potential 
(SUGRA), having a time-dependent 
slope        , or introducing an 
interaction of the field (coupled DE)

↵(t)

The interesting feature of scalar field Quintessence models is that 
for some particular potentials they provide scaling solutions:

⇢�
⇢
background

⇡ const. (74)
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k-essence
Generalised scalar field models whose Lagrangian density is given 
by a generic function                        of the scalar field     and of its 
kinetic energy                                           are called k-essence.

L� = p(�,�) �

� ⌘ �(1/2)gµ⌫@µ�@⌫�
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k-essence
Generalised scalar field models whose Lagrangian density is given 
by a generic function                        of the scalar field     and of its 
kinetic energy                                           are called k-essence.

L� = p(�,�) �

� ⌘ �(1/2)gµ⌫@µ�@⌫�

This allows to consider models with negative kinetic energy (called 
phantom): p(�,�) = ��� V (�)

The energy, pressure, and equation of state for k-essence are:

⇢� = 2�@p/@�� p p� = p w� =
p

2�@p/@�� p

so that the condition for acceleration is given by:

|2�@p/@�| ⌧ |p|

(75)

(76)
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time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘
Dynamical DE 

(DE parameterisations, 
Quintessence, 

k-essence)

✔
a dynamical (scalar) 
degree of freedom

✘ 

no clustering at 
sub-horizon scales

✘
minimally-coupled to 

matter fields

Classification of Dark Energy models



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015

time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘
Dynamical DE 

(DE parameterisations, 
Quintessence, 

k-essence)

✔
a dynamical (scalar) 
degree of freedom

✘ 

no clustering at 
sub-horizon scales

✘
minimally-coupled to 

matter fields

Clustering DE
(“cold” DE models, 
Unified DE models)

✔
a dynamical (scalar) 
degree of freedom

✔
small sound speed, 
clustering at sub-H

✘
minimally 

coupled to matter

Classification of Dark Energy models
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parameterisations or scalar field models are characterised by a 
sound speed of the order of the speed of light:
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cs,(DE) ⇡ 1
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parameterisations or scalar field models are characterised by a 
sound speed of the order of the speed of light:
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Recalling the equation for gravitational instability for a general 
sound speed     , in Fourier space one has:
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Clustering Dark Energy
Standard homogeneous Dark Energy models like           
parameterisations or scalar field models are characterised by a 
sound speed of the order of the speed of light:

w(a)

cs,(DE) ⇡ 1

Therefore, if                                     , which means that DE 
perturbations do not grow for scales smaller than the horizon.

c2s ⇡ 1 ! �J ⇡ H�1

It is however possible to build Dark Energy models with a sound 
speed as low as matter              so that Dark Energy density 
perturbations can survive also at sub-horizon scales.

c2s ⇡ 0

cs
Recalling the equation for gravitational instability for a general 
sound speed     , in Fourier space one has:

�00 +H�0 +

✓
c2sk

2 � 3

2
H2

◆
� = 0 (77)

so that perturbations will not grow for                          satisfying:� = (2⇡a)/k

k >
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3
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) � < �J =
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✘
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time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘
Dynamical DE 

(DE parameterisations, 
Quintessence, 

k-essence)

✔
a dynamical (scalar) 
degree of freedom

✘ 

no clustering at 
sub-horizon scales

✘
minimally-coupled to 

matter fields

Clustering DE
(“cold” DE models, 
Unified DE models)

✔
a dynamical (scalar) 
degree of freedom

✔
small sound speed, 
clustering at sub-H

✘
minimally 

coupled to matter

Interacting DE
(Coupled and Extended 

Quintessence, 
Modified Gravity)

✔
a dynamical (scalar) 
degree of freedom

✔
fluctuations sourced 
by the interaction

✔
non-minimally 

coupled to matter

Classification of Dark Energy models
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We have seen that general covariance implies the Bianchi identities:

rµG
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µ
⌫ = 0 (79)
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Interacting Dark Energy: coupled Quintessence (I)
We have seen that general covariance implies the Bianchi identities:

rµG
µ
⌫ = 0 ) rµT

µ
⌫ = 0 (79)

however, the energy-momentum tensor is the sum of several 
different components, such that:

rµT
µ(DM)
⌫ +rµT

µ(b)
⌫ +rµT

µ(r)
⌫ +rµT

µ(DE)
⌫ = 0 (80)
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We have seen that general covariance implies the Bianchi identities:

rµG
µ
⌫ = 0 ) rµT

µ
⌫ = 0 (79)

therefore, a source term of the form                             is allowed if: rµT
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X
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Interacting Dark Energy: coupled Quintessence (I)
We have seen that general covariance implies the Bianchi identities:

rµG
µ
⌫ = 0 ) rµT

µ
⌫ = 0 (79)

therefore, a source term of the form                             is allowed if: rµT
µ(i)
⌫ = C(i)

⌫
X

i

C(i)
⌫ = 0 (81)

however, the energy-momentum tensor is the sum of several 
different components, such that:

rµT
µ(DM)
⌫ +rµT

µ(b)
⌫ +rµT

µ(r)
⌫ +rµT

µ(DE)
⌫ = 0 (80)

So, if dark matter and a scalar field have opposite source terms

rµT
µ(�)
⌫ = �QT (DM)r⌫� rµT

µ(DM)
⌫ = +QT (DM)r⌫�

this corresponds to a direct interaction between the two fields
(82)
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Interacting Dark Energy: coupled Quintessence (II)
In a flat FLRW metric this type of interaction implies a modified 
continuity equation for the matter field and a modified Klein-Gordon 
equation for the scalar field:

⇢̇DM + 3H⇢DM = +Q⇢DM�̇ �̈+ 3H�̇+
dV

d�
= �Q⇢DM

(83)
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continuity equation for the matter field and a modified Klein-Gordon 
equation for the scalar field:

⇢̇DM + 3H⇢DM = +Q⇢DM�̇ �̈+ 3H�̇+
dV

d�
= �Q⇢DM

(83)
Integrating the continuity equation one gets:

⇢DM = ⇢(0)DM(a/a0)
�3

exp

Z �
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Q(

˜�)d˜� (84)
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Interacting Dark Energy: coupled Quintessence (II)
In a flat FLRW metric this type of interaction implies a modified 
continuity equation for the matter field and a modified Klein-Gordon 
equation for the scalar field:

⇢̇DM + 3H⇢DM = +Q⇢DM�̇ �̈+ 3H�̇+
dV

d�
= �Q⇢DM

(83)
Integrating the continuity equation one gets:

⇢DM = ⇢(0)DM(a/a0)
�3

exp

Z �

�0

Q(

˜�)d˜� (84)

which corresponds to a time variation of the particles mass:

mDM(a) = m(0)
DM�mDM(�(a)) (85)
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Interacting Dark Energy: coupled Quintessence (II)

The coupling term in the Klein-Gordon equation can be seen as a 
perturbation of the potential that results in a shallower effective 
potential for the scalar field.

In a flat FLRW metric this type of interaction implies a modified 
continuity equation for the matter field and a modified Klein-Gordon 
equation for the scalar field:

⇢̇DM + 3H⇢DM = +Q⇢DM�̇ �̈+ 3H�̇+
dV

d�
= �Q⇢DM

(83)
Integrating the continuity equation one gets:

⇢DM = ⇢(0)DM(a/a0)
�3

exp

Z �

�0

Q(

˜�)d˜� (84)

which corresponds to a time variation of the particles mass:

mDM(a) = m(0)
DM�mDM(�(a)) (85)
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Interacting Dark Energy: coupled Quintessence (III)
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dV
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= 0

V (�) = V0 exp[�↵�]
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Interacting Dark Energy: coupled Quintessence (III)

�̈+ 3H�̇+
dV

d�
= �Q⇢DM

V (�) = V0 exp[�↵�]

+

Z
Q⇢DMd�̃
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Interacting Dark Energy: coupled Quintessence (IV)
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Interacting Dark Energy: coupled Quintessence (IV)
The most significant property of coupled Quintessence is that the 
coupling determines a new type of scaling solution, called Φ-Matter 
Dominated Epoch (Φ-MDE), characterised by:

⌦� =
2Q2

3
w� = +1 (86)
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Interacting Dark Energy: coupled Quintessence (IV)

The novel feature of this solution is that for              and Q ⌧ 1

Q
⇣
Q+

↵

8⇡G

⌘
> �3

2

it is a saddle point (metastable solution) that naturally evolves to an 
accelerated dark-energy dominated solution

(87)

The most significant property of coupled Quintessence is that the 
coupling determines a new type of scaling solution, called Φ-Matter 
Dominated Epoch (Φ-MDE), characterised by:

⌦� =
2Q2

3
w� = +1 (86)



Marco Baldi - Lectures on Dark Energy - Ferrara Astrophysics PhD school, September 2015
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Consider Q(�) ⌘ �

p
8⇡G�

The interaction modifies the cosmic background evolution
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Interacting Dark Energy: coupled Quintessence (VI)
Consider Q(�) ⌘ �

p
8⇡G�

The interaction modifies the cosmic background evolution
Hubble functions for different coupled dark energy models
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RP2 (_ = 0.143, `c=0.08)
RP3 (_ = 0.143, `c=0.12)
RP4 (_ = 0.143, `c=0.16)
RP5 (_ = 0.143, `c=0.2)

Baldi et al. 2010
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Interacting Dark Energy: coupled Quintessence (VII)
Consider Q(�) ⌘ �

p
8⇡G�

The mass variation, along the modified background evolution, 
corresponds to a transfer of energy from the DM field to the scalar 
field

Mass correction for different coupled dark energy models
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RP4 (_ = 0.143, `c=0.16)
RP5 (_ = 0.143, `c=0.2)

Baldi et al. 2010
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All the DE models discussed so far attempt to explain cosmic 
acceleration by introducing a new field with wDE < �1/3
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Modified Gravity: f(R)    (I)
All the DE models discussed so far attempt to explain cosmic 
acceleration by introducing a new field with wDE < �1/3

An alternative approach is to modify General Relativity in the low 
curvature regime by changing the gravitational Action. One of the 
most popular models of this modified gravity approach is f(R):

S =
1

16⇡G

Z
d

4
x

p
�gf(R) + Sm(gµ⌫ , m) (88)
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Modified Gravity: f(R)    (I)
All the DE models discussed so far attempt to explain cosmic 
acceleration by introducing a new field with wDE < �1/3

By varying this Action with respect to the metric tensor, with a similar 
procedure as for the standard GR Action, one gets the f(R) field eqs:

fRRµ⌫ � 1

2
f(R)gµ⌫ �rµr⌫fR + gµ⌫⇤fR = 8⇡GTµ⌫ (89)

An alternative approach is to modify General Relativity in the low 
curvature regime by changing the gravitational Action. One of the 
most popular models of this modified gravity approach is f(R):

S =
1

16⇡G

Z
d

4
x

p
�gf(R) + Sm(gµ⌫ , m) (88)
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Modified Gravity: f(R)    (I)
All the DE models discussed so far attempt to explain cosmic 
acceleration by introducing a new field with wDE < �1/3

By varying this Action with respect to the metric tensor, with a similar 
procedure as for the standard GR Action, one gets the f(R) field eqs:

fRRµ⌫ � 1

2
f(R)gµ⌫ �rµr⌫fR + gµ⌫⇤fR = 8⇡GTµ⌫ (89)

An alternative approach is to modify General Relativity in the low 
curvature regime by changing the gravitational Action. One of the 
most popular models of this modified gravity approach is f(R):

S =
1

16⇡G

Z
d

4
x

p
�gf(R) + Sm(gµ⌫ , m) (88)

3⇤fR + fRR� 2f(R) = �8⇡G(⇢� 3p)

where we have defined fR ⌘ df/dR

trace (90)

(91)
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On the contrary, if       is a function of     one has                   so that
      corresponds to a new propagating scalar degree of freedom.

fR R ⇤fR 6= 0
fR

A particularly relevant model of f(R) gravity is given by the choice 
(Hu & Sawicki 2007):

because this allows to reproduce exactly the background evolution 
of a ΛCDM cosmology by setting:

f(R) = R�m2 c1(R/m2)n

c2(R/m2)n + 1
m2 ⌘ 8⇡G⇢0

3

c1
c2

= 6
⌦⇤
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Modified Gravity: f(R)    (II)

In GR one has                              so that               and   f(R) = R� 2⇤ fR = 1 ⇤fR = 0

On the contrary, if       is a function of     one has                   so that
      corresponds to a new propagating scalar degree of freedom.

fR R ⇤fR 6= 0
fR

In this setup the f(R) model will differ from the standard ΛCDM 
cosmology only at the level of linear and non-linear perturbations

A particularly relevant model of f(R) gravity is given by the choice 
(Hu & Sawicki 2007):

because this allows to reproduce exactly the background evolution 
of a ΛCDM cosmology by setting:

f(R) = R�m2 c1(R/m2)n

c2(R/m2)n + 1
m2 ⌘ 8⇡G⇢0

3

c1
c2

= 6
⌦⇤

⌦M

(92)

(93)
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fR ! 0 ) f(R) ! GR

Hu & Sawicki 2007
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one gets a perturbed metric (after some gauge choice)

ds

2 = a

2(⌘)
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�(1 + 2 )d⌘2 + (1 + 2�)�ijdx
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and by perturbing the EM tensor of a perfect fluid
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gµ⌫ = g(0)µ⌫ + �gµ⌫

one gets a perturbed metric (after some gauge choice)

ds

2 = a

2(⌘)
⇥
�(1 + 2 )d⌘2 + (1 + 2�)�ijdx

i
dx

j
⇤

and by perturbing the EM tensor of a perfect fluid

�Tµ
⌫ = ⇢

⇥
�(1 + c2s)u⌫u

µ + (1 + w)(�u⌫u
µ + u⌫�u

µ) + c2s��
µ
⌫

⇤

one can then obtain the equations for the evolution of density and 
velocity perturbations

⌫ = 0 : �0 + 3H(c2s � w)� = �(1 + w)(✓ + 3�0)

⌫ = i : ✓0 +


H(1� 3w) +

w0

1 + w

�
✓ = �r2

✓
c2s

1 + w
� + 

◆

that describe how perturbations grow through grav. instability
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The source term is given by the Poisson equation

r2� = 4⇡Ga2⇢� =
3

2

8⇡G⇢

3H2
a2H2� =

3

2
⌦H2�

�00 +H�0 � 3

2
⌦H2� = 0

and the two equations can be combined in a single 2nd order eq.

Cosmic acceleration can be described by models beyond the 
cosmological consant, like w parameterisations

w(a) = w0 + wa(1� a) wDE(a) =
w0

1 + b ln(1/a)

or scalar field models (Quintessence, k-essence)

L� = �1

2
gµ⌫@µ�@⌫�� V (�) L� = p(�,�)
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Scalar field models can also have interaction terms with matter

rµT
µ(�)
⌫ = �QT (DM)r⌫� rµT

µ(DM)
⌫ = +QT (DM)r⌫�

resulting in modified dynamic equations

�̈+ 3H�̇+
dV

d�
= �Q⇢DM⇢̇DM + 3H⇢DM = +Q⇢DM�̇

The advantage of these interaction terms is that they provide a 
mechanism to exit from a scaling solution (required to solve the 
fine-tuning problem) into an accelerated solution.

S =
1

16⇡G

Z
d

4
x

p
�gf(R) + Sm(gµ⌫ , m)

Another alternative is to directly modify the gravitational Action

which can give a similar background expansion as ΛCDM but a 
different growth of perturbations


