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● Fast Radio Bursts (FRBs)
● Review of some current synoptic surveys
● move on to future facilities
● Highlights on the multi-wavelength and multi-
messenger character of future followup activities
● Strategy, coordination of followup observations.
● Data mining: development of clever code to cope 
with massive data sets

Overview
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Fast Radio Bursts

(FRBs)
unexpected mysterious blasts from past
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● Only 9 found so far (as of mid Dec 2014)
● All observed in 21 cm waveband
● Observed at different locations on sky
● No repetition
● Positional uncertainty
● Fluxes: 0.35-30 Jy   [1Jy = 10-26 W m-2 Hz-1]
● Durations: a few ms
● Very high dispersion measure:

DM = 375 – 1629 pc cm-3 

Basic properties
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Dispersion
Plasma frequencies in astrophysics are usually around a few kHz, so in the radio band at 100 MHz 1 −
GHz the group velocity can be approximately written as
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Distribution in Galactic coordinates
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Distribution in Galactic coordinates
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Comparison with galactic DM

Spitler+14
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Pulse Time 
Profiles

Thornton+13
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Dynamic Spectrum: intensity as a function of 
frequency

Lorimer+07

FRB010824
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Dynamic Spectrum: intensity as a function of 
frequency

Thornton+13

FRB110220
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Petroff+14

(z=0.725)

SLSN z=0.289

 FRB 140514: fast X-ray, optical, radio, upper limits

7-8 hours
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Inferred FRB rates
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● Ascribing DM to host galaxies and IGM
● z~0.5-1, L

p,radio
~1042-43 erg/s, E~1039-40 ergs

⇒ Hyperflares from magnetars, collapse of NS to BH, 
mergers of double NSs or binary WDs, connected with 
fraction of GRBs 
(Popov&Postnov07,Falcke&Rezzolla14,Totani13,Kashiyama13,Zhang14)

● Crab-like giant pulses or flares from local 
circumnuclear magnetars within nearby (< hundreds 
Mpc) galaxies (Pen+Connor15).
● Due to nearby (1 kpc) flaring stars? (Loeb+14; Maoz+15)

Interpretations: almost everything...
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● Need to increase the sample
● Many unknowns (spectra, rate, distance, thus 
luminosities, origin...)
● If cosmological, FRBs can probe the ionized IGM
● Real-time detections and multi-wavelength followup 
(as it was the case with GRBs)
● FRBs are now science drivers on incoming 
telescopes (FAST, MeerKAT...)
● Potential for high-impact science

FRB: future developments
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Currently 
operational surveys



Sep 7-11, 2015 Ferrara PhD School 17

fsdffsdf

Intermediate 
Palomar Transient 

Factory (iPTF)
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fsdffsdf

● Built upon the legacy of Caltech-led PTF, which began in 2009
● Large field camera: 7.8 deg2

● 11 active 2048x4096 pixel CCDs
● Telescope: 1.2m (48 inch) Samuel Oschin Telescope at Palomar 
Observatory (same used for photographic Palomar All-Sky Survey) 
● Standard strategy: 60s exposures in R+g bands

● Rlim = 20.5 mag @ 3σ
● Glim = 21 mag @ 3σ
● Different cadences: from 90s to 5 days

● Real time transient search at Lawrence Berkeley National Lab
● 2017: iPTF will transition to the Zwicky Transient Factory 
(ZTF), which will be a direct lead-in to the LSST era.
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fsdffsdf

Survey Operation

● Any interesting transient is followed up with many other 
facilities: P60, P200 for both imaging and spectroscopy

● P48 has robotic control system

● P60 is devoted to followup of interesting candidates of P48 

It works like a factory.
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A GRB orphan afterglow or...

Cenko+13
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...or a new class of relativistic outbursts?

Cenko+13

Optical+radio afterglow modelled with a jet as viewed close to the jet border or right on 
axis of a wider jet.
Basic question: Why no associated GRB?
Answer: many possibilities.......
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Pan-STARRS
Panoramic Survey Telescope 
And Rapid Response System
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● Relatively small mirrors with very large digital cameras
● 64x64 array of CCDs, 600x600 pix each
● Total 1.4 gigapixel
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● Four individual 1.8m mirrors
● Observing the same region of the sky simultaneously
● Individual FOV: 3 degrees
● Spatial resolution: 0.3”
● Coverage: 6,000 deg2 per night
● Whole sky from Hawaii 3 times during each lunar cycle
● Filters: SDSS griz
● Exposures: from 30 to 60 s

● Lim mag ~ 24
● PS1 Prototype already operative at Halekala (Hawaii)
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PS1 Dome
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PS1+PS2
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The PS1 Science Consortium:

 University of Hawaii, Institute for Astronomy

 Max Planck Society; institutes in Garching and in Heidelberg

 The Johns Hopkins University, Dept. of Physics and Astronomy

 Harvard-Smithsonian Center for Astrophysics

 Las Cumbres Observatory

 Durham University, Extragalactic Astronomy & Cosmology Research Group

 University of Edinburgh, Institute for Astronomy

 Queen's University Belfast, Astrophysics Research Center

 National Central University, Taiwan
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Pan-STARRS Science Goals
● Detection of near Earth objects (NEOs) and potentially hazardous objects 
(PHOs) in the Solar System

● 1-km diameter objects that pass close to the Earth and many of the 300-
m ones
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Pan-STARRS Science Goals
● Detection of main-belt asteroids (estimated number: 10,000,000) as 
potential source of NEOs

● Kuiper Belt objects (KBOs; outer Solar System). Some of these objects are 
as large as 1000 km in diameter. These objects are found in a region that 
starts near the orbit of Neptune and extends into the outer solar system well 
beyond the orbit of Pluto.
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Pan-STARRS Science Goals
● Evolution and death of stars: SNe, GRBs, GRB orphan afterglows, CVs, 
microquasars, msec-pulsars...

● Young stellar objects

● Cepheids, RR Lyrae......and TDEs, of course:
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...and many other: CATALINA
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...and many other: SkyMapper
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A revolution is 
around the corner
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 8.4-m telescope in Cerro Pachon (Northern Chile)

 From ~2020

 FOV: 9.6 deg2

 Camera: 3.2 Gigapixel (largest in the world)

 Sensitivity (5: r~24.5 mag (15 s exposure), 27 mag (stacked).

 Cadence: twice/night (two 15-s exposures) every 3 nights.

 Expected data output: 30 TB/night

 Totale survey area: 3x104 deg2,   < +34.5 deg

 Wavelength coverage: 320-1050 nm (filters ugrizy)
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 Observation Strategy
● 90% time: deep-wide-fast survey mode

18,000 deg2 scanned 1000 times 
over all filters in 10 yr

Coadded map down to r~27.5 mag

Catalogues of 10 billions galaxies 
and stars 

● 10% time: special projects:

Very Deep and Fast time domain 
survey

 

  Data products publicly available and 
accessible.
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How is this possible?

Confluence of several technological developments. New fabrication techniques for large optics 
developed for the most recent generation of large telescopes can be extended to novel optical 
designs which allow large fields of view. New detector technologies allow the construction of 
cameras which can capture these wide-angle images on focal planes paved with billions of high-
sensitivity pixels (picture elements). Recent phenomenal advances in microelectronics and data 
storage technologies provide greatly enhanced facilities for digital computation, storage, and 
communication, and new software innovations enable fast and efficient searches of billions of 
megabytes of data.
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● Probing Dark Energy and Dark Matter

● Taking an inventory of the Solar System

● Exploring the Transient Optical Sky
● Mapping out our own galaxy, the Milky Way

Science Drivers
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● GRB afterglows and transients 
out to high z (z~7.5).

● Optical bursters (faster than 
1mag/hr) down to r~25 mag.

● Microlensing in the Local Group

● Unusual SN population

● Dwarf Novae 

● Deep search for Novae and SN 
progenitors

● Search for TDEs

● Exoplanets (hot Jupiters) via 
transits

LSST and the Transient Sky

● Accurate quasar variability

● Optical identification of transients 
found at other wavelengths, or GW, 
or neutrino
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Real data process and alert 
generations for new sources of 
known ones caught in the
act of varying
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Real data process and alert 
generations for new sources of 
known ones caught in the
act of varying

Esti
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Software: the soul of the machine

● Pairs of 15-s exposures, 2-s readout, moves to next while 
reading out the 2nd frame.
    --> 330 MB/s Huge data rate
● Data analysed in the minute before new pair of frames is 
taken.
● Schedule changed whenever rapidly varying objects are 
found and alerts sent to other facilities and space satellites.
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Image subtraction

Two images of a cluster of galaxies, taken three weeks apart, are 
subtracted to reveal that a supernova has exploded in one of the galaxies. 
All of the persistent information in the two images is removed by the 
subtraction. LSST will detect events as faint as 24th magnitude in ten 
seconds and equivalent to the brightness of a golf ball at the distance of 
the Moon.
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Many facilities are planned to 
followup the LSST transients:
The Liverpool Telescope 2

● 4-m robotic telescope
● Planned for 2020
● Based on experience of LT (2-m)
● Data taking start 30 sec of the 

receipt of transient alerts

2-m robotic Liverpool Telescope 
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A measure of survey power is etendue = collecting area x FOV

Often equated with “discovery rate” or “survey potential”
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Electromagnetic Follow-up of Gravitational Wave CandidatesElectromagnetic Follow-up of Gravitational Wave Candidates
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GW Partner TelescopesGW Partner Telescopes
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Radio Joins the Synoptic Revolution
KAT-7 MeerKATASKAP

•Large investments in SKA-prototypes
•Focal-plane array technology to give

● FoV  8 deg2  for WSRT/Apertif
● FoV 30 deg2 for ASKAP.  

•LNSD design for MeerKAT
•Optimized for 1.4 GHz 
•Time domain is Key Science program

WSRT/Apertif



Ferrara PhD School 54
54

Sep 7-11, 2015

LOFAR

ASKAP

LWA MeerKAT

WSRT-Apertif
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Radio Transient Timescales

(Pietka+15)
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Radio Transient Lum vs. Timescales

(Pietka+15)
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Radio Transient Phase Space

(Pietka+15)
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Follow-up: A biased but rewarding approach
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Cherenkov Telescope Array:
a forthcoming revolution in the very high 

energy gamma-ray (E>10 GeV)
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Cherenkov Telescope
A gamma-ray interacting with atmospheric atoms 
gives rise to a high-energy particle cascade, which 
move at v>c_n (speed of light in medium).
Cherenkov radiation is then produced and a blue-
ish light is released as a consequence (nsec flashes).
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CTA Science

CTA will outperform 
currently operational 
HESS, Magic, VERITAS 
by a factor of 10 in 
sensitivity
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Astrophysical neutrino detections
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Surveys generate 
thousands of transient 

candidates
Searching through them 
efficiently is demanding

Use the public to identify 
the best objects

Guided by decision tree
Candidates must be clean, have positive pixels, not be 
elongated or diffuse, etc.
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Crab flare coverage
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● We just entered the multi-messenger astronomy era
● We just began discovering new classes of transient 
phenomena and exploring new territories in the time-
luminosity phase space
● The impressive rate of transient alerts that forthcoming 
large synoptic surveys, multi-wavelength and non e.m. 
messsenger telescopes will provide require:

● Effective algorithms for automatic 
selection/identification

● Effective joint strategies and communication

Summary
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The End


